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Recapitulation of Lecture 1

Flavor physics (and other areas of particle, nuclear, and astro physics) need non-
perturbative calculations in QCD.

Need tool(s) that get at the non-perturbative dynamics. Although unitarity, analyticity,
symmetry, and renormalization theory are wonderful, they’re not enough.

Lattice gauge theory lends a clear definition of the functional integral

〈•〉=
1
Z

Z
Dφ • e−S (with 〈1〉 ≡ 1)

and, thus, provides new tools.

The tool in widest use is a numerical evaluation of the functional integrals, using
Monte Carlo methods with importance sampling. The basic idea can be understood
from examples in quantum mechanics.
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Quantum Field Theory

Today we will go over lattice field theories.

For (both scalar and gauge) bosons the Metropolis method (covered last time) and
similar techniques (heat bath, successive overrelaxation) are still used.

Simplicity follows from the locality of interactions in particle physics and the positivity
of any unitary action.

Fermions are (numerically) more complicated. The underlying reason for this is the
Pauli exclusion principle. The computations are much, much more demanding. As a
consequence the necessary algorithms have been the subject of much research and
are now too baroque to discuss here.

We shall also see that fermions are theoretically more complicated too.
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Lattice Field Theory

(Subset of) Zd lattice, spacing a.

Finite spatial volume, usually with all

three sides of (physical length) L = NSa.

Finite time extent, L4 = N4a; related to

temperature: kBT = ~c/L4.

Boundary conditions usually periodic or

anti-periodic, sometimes fixed.

Matter fields on sites.

Gauge fields on links.

a

L = N
S
a

L
4 =

 N
4a
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Correlation Functions

Recall the large-time behavior of 2-point correlation functions:Z
d3x〈Q1(x,x4)Q2(0,0)〉c

large T→ 〈0|Q̂1(p = 0)|1〉〈1|Q̂2(0)|0〉e−m1x4

+ 〈0|Q̂2(0)|1〉〈1|Q̂1(0)|0〉e−m1(T−x4).

Today we will use this a couple of times to uncover what states the lattice gauge
theories contain.

I’ll conjure up the momentum space propagator, and Fourier transform from (p, p4)
back to (p,x4).

The x4 dependence will allow us to read off the energies; the pattern of matrix ele-
ments will also tell us something about the states.

Lattice QCD 2 What you gonna say. Andreas S. Kronfeld
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Quantum Mechanics on a Lattice

In quantum mechanics the classcial action (with τ = it)

S =
Z

dτ

[
1
2m
(

dx
dτ

)2
+V (x)

]
.

We saw last time that the velocity dx/dτ first appeared in a discrete approximation:

S = a
N−1

∑
n=0

[
1
2m
(

xn+1− xn
a

)2
+V (xn)

]
, Dx = ∏

n
dxn.

where n ∈ Z and dimensionful τ = na.

For field theory we simply repeat this replacement in all d dimensions.

Lattice QCD 2 Fields on a Lattice Andreas S. Kronfeld
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Scalar Field Theory on a Lattice
For a scalar boson field, the action is

S =
Z

d4x

[
1
2

d

∑
µ=1

(
∂φ

∂xµ

)2
+V (φ)

]
,

where V (φ) = 1
2m2

0φ2 +λ0φ4/4!+ · · ·.

To obtain the simplest lattice action, replace the derivatives with finite differences in
all d directions,

S = ad
∑
n

[
d

∑
µ=1

1
2a−2

(
φn+e(µ)−φn

)2
+V (φn)

]
, Dφ = ∏

n
dφn.

where e(µ) is a unit vector in the µ direction, and n ∈ Zd (or finite subset thereof).

This is a square, cubic, or hypercubic lattice for d = 2,3,4.
Dimensionful spacetime labels xµ = nµa.
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Free Lattice Field Theory
The kinetic terms may be re-written

∑
n

(
φn+e(µ)−φn

)2
= ∑

n
2φ

2
n−2φnφn+e(µ) = ∑

n
2φ

2
n−φn

(
φn+e(µ) +φn−e(µ)

)
analogous to integrating by parts (∂µφ)2 →−φ∂2

µφ.

So we will take the lattice Lagrangian (or Lagrange density) to be

Ln = a−2 1
2 ∑

µ
φn(tµ + t−µ−2)φn−V (φn),

t±µφn = φn±e(µ), S =−ad
∑
n

Ln.

For free fields V (φ) = 1
2m2

0φ2. In momentum space, the propagator is

G(p)−1 = p̂2 +m2
0,

where p̂2a2 = ∑µ
1
2(eipµa + e−ipµa−2) = ∑µ[2sin(1

2 pµa)]2 = ∑µ p̂2
µa2.

Lattice QCD 2 Free Field Theory Andreas S. Kronfeld
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Fourier transform from p4 back to x4:

G(p,x4) =
Z d p4

2π

eip4x4

p̂2
4 + p̂2 +m2

0
=

Z d p4
2π

a2eip4x4

2+a2(p̂2 +m2
0)−2cos p4a

=
I dz

2πi
az|x4|/a

2zcoshEa−2(z2 +1)
, z = esign(x4)ip4a

=
ae−E|x4|

2sinhEa
expected

e−(p2+m2)1/2|x4|

2(p2 +m2)1/2

where coshEa = 1+ 1
2a2(p̂2 +m2

0).

Here we have defined the energy through the fall-off of the correlation function:

〈φ(p,x4)φ(q,x4)〉c = (2π)d−1
δ(p−q)G(p,x4) or L1−d

δp,qG(p,x4)

We see that discretization effects distort the energy.
They also change the normalization so it is no longer canonical.

Lattice QCD 2 Free Field Theory Andreas S. Kronfeld
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Lattice Gauge Symmetry

Now suppose we have a complex (i.e., charged) scalar field.

Suppose it transforms under some gauge group as

φ(y) 7→ g(y)φ(y), φ
†(x) 7→ φ

†(x)g−1(x), g−1 = g†.

In the Lagrangian for scalar fields, the local terms are automatically gauge invariant if
the potential is a function φ†φ (as it would be):

φ
†(x)φ(x) 7→ φ

†(x)g−1(x)g(x)φ(x) = φ
†(x)φ(x).

Not so for the kinetic terms, which involve fields on different sites:

φ
†(x)φ(y) 7→ φ

†(x)g−1(x)g(y)φ(y),

which is not (yet) gauge invariant.

Lattice QCD 2 Whither Gauge Invariance? Andreas S. Kronfeld
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Suppose we had an object that transforms as

U(x,y) 7→ g(x)U(x,y)g−1(y),

then φ†(x)U(x,y)φ(y) is gauge-invariant.

From continuum gauge-field theory, we have a suitable object

U(x,y) = Pexp
(R x

y dz ·A
)

,

ordered along some path from y to x. Verify U(x,y) 7→ g(x)U(x,y)g−1(y).

The U(x,y) are often called parallel transporters (by mathematicians) or Wilson lines
(by physicists).

We can make φ†(x)t±µφ(x) gauge invariant simply by inserting the parallel trans-
porter along the link: t±µφ(x)→ T±µφ(x) = U(x,x±ae(µ))φ(x±ae(µ)).

Lattice QCD 2 Gauge Invariant Scalar Interactions Andreas S. Kronfeld
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Lattice Gauge Fields
This means that the basic variables for lattice gauge fields are

Uµ(x) = U(x,x+ae(µ)), U(x,x−ae(µ)) = U†(x−ae(µ),x) = U†
µ (x−ae(µ))

They take values in a Lie group. Aµ takes values in the Lie algebra.

So integrating over all Uµ(x) sums over all possible lattice gauge fields.

What is the measure? We wantZ
dU f (U) =

Z
dU f (gU) =

Z
dU f (Ug−1)⇒

Z
dU U = 0Z

dU1 = 1 ⇒
Z

dU Ui jU
∗
lk =

1
N

δilδk j for SU(N)

Mathematicians call this Haar measure.

The functional integral is then DU = ∏n,µ dUµ(n).

Lattice QCD 2 Gauge Fields on a Lattice Andreas S. Kronfeld
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Lattice Gauge Action

Now we need an action for lattice gauge fields.

The simplest one is obtained by analogy with the simplest action for scalar fields.
Now the translations are

TµUν(x) = Uµ(x)Uν(x+ae(µ))U†
µ (x+ae(ν))

T−µUν(x) = U†
µ (x−ae(µ))Uν(x−ae(µ))Uµ(x−ae(µ) +ae(ν))

So,

−∑
x,µ

tr[U†
ν (x)(Tµ +T−µ−2)Uν(x)] = 2∑

x,µ
Pµν

Pµν = Retr[1−Uµ(x)Uν(x+ae(µ))U†
µ (x+ae(ν))U†

ν (x)].

Wilson proposed the action

S =
β

2N ∑
x,µ,ν

Pµν(x) the Wilson (plaquette) action

Lattice QCD 2 Wilson Plaquette Action Andreas S. Kronfeld
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Lattice Gauge Actions
Remarkably, the plaquette action reduces to the Yang-Mills action

S =− 1
2g2

0

Z
d4x tr[FµνFµν]

when a → 0, identifying β = 2N/g2
0.

The lattice breaks space-time Lorentz (actually Euclidean) invariance, so there are
discretization effects of the form a2φ̄∂4

µφ. Being suppressed by a2, it’s tolerable.

Maintaining exact gauge invariance forbids interactions like m2
gAa

µAa
µ for gluons.

The lattice actions presented so far are simple, but not the only choice. (Think of
numerical methods for PDEs.) To maintain gauge invariance, the Lagrangian of lattice
gauge theory must be built out of local combinations

tr[UC (z,z)], φ
†(x)UP (x,y)φ(y), ψ̄(x)UP (x,y)ψ(y),

such that the continuum Lagrangian emerges when a → 0.
Lattice QCD 2 Importance of Gauge Invariance Andreas S. Kronfeld
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Chiral Symmetry
The Lagrangian for continuum fermions is

L(x) =−ψ̄(x)(/D+m0)ψ(x), /D = Dµ
γµ, Dµ =

∂

∂xµ
+Aµ.

The field ψ annihilates quarks and creates anti-quarks. It has four components, two
each for (spin 1

2) quarks and anti-quarks.

The matrices γµ satisfy {γµ,γν} = 2δµν (in Euclidean metric) and encode the spinor
representation of the Lorentz (actually, Euclidean) group.

The Lagrangian is invariant under phase rotations (the group U(1))

ψ 7→ eiθ
ψ, ψ̄ 7→ ψ̄e−iθ,

which corresponds to baryon number. (Also invariant under SU(3) color, but that’s not
where we’re going.)

If there are n f flavors, then the flavor symmetry is SU(n f )×U(1).
Lattice QCD 2 Continuum Fermions Andreas S. Kronfeld
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In studying L(x) = −ψ̄(x)(/D+m0)ψ(x), there is another “Dirac” matrix of interest
γ5 = γ1γ2γ3γ4, which turns out to satisfy {γ5,γµ}= 0, γ

†
5 = γ5, γ2

5 = 1.

If the mass vanishes, there is another (“axial”) symmetry

ψ 7→ e+iαγ5ψ, ψ̄ 7→ ψ̄e+iαγ5.

With n f flavors the flavor symmetry becomes SUV (n f )×SUA(n f )×UV (1).

It is sometimes convenient (though not too important here) to introduce

ψL = 1
2(1− γ5)ψ, ψR = 1

2(1+ γ5)ψ, ψ̄L = ψ̄
1
2(1+ γ5), ψ̄R = ψ̄

1
2(1− γ5)ψ.

Then

L(x) =−ψ̄L(x)/DψL(x)− ψ̄R(x)/DψR(x)−m0ψ̄L(x)ψR(x)−m0ψ̄R(x)ψL(x)

and the (m0 = 0) symmetry can be recast as SUL(n f )×SUR(n f )×UV (1).

Chiral symmetry.

Lattice QCD 2 Chiral Symmetry Andreas S. Kronfeld
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Chiral symmetry plays an important role in QCD.

For massless quarks the vacuum spontaneously breaks

SUL(n f )×SUR(n f )→ SUV (n f )

and the up, down, and strange quarks have masses small enough that this spon-
taneious breaking is evident in the spectrum:

m2
π � m2

ρ, m2
K = 0.3m2

K∗.

An effective field theory for the pion cloud: chiral perturbation theory (χPT).

You might wonder why there is no axial UA(1), in analogy with UV (1). A quantum
effect called the “anomaly” breaks it explicitly.

The anomaly is observed experimentally in π0 → γγ.

Lattice QCD 2 Chiral Symmetry Andreas S. Kronfeld
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Lattice Fermions
We would like to find a discretization of the Lagrangian

L(x) =−ψ̄(x)(/D+m0)ψ.

/D is anti-Hermitian, /D† =−/D.

We’ve learned how to put in the gauge fields, so let’s focus on the free case.

The simple choices ∂µ → tµ−1 or 1− t−µ are not anti-Hermitian, so the particle and
anti-particle parts of ψ would propagate differently.

The simplest anti-Hermitian choice is (tµ− t−µ)/2a, yielding the naive action

LNF =−ψ̄(x)

[
1

2a ∑
µ

γµ(tµ− t−µ)+m0

]
ψ(x)

We will now try to see what this is, by looking at the propagator.

Lattice QCD 2 Naive Andreas S. Kronfeld
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Naı̈ve Propagator

The propagator that one gets from this Lagrangian is (x4 = n4a > 0)

G(p,x4) =
Z d p4

2π
eip4x4

a
i∑µ γµ sin(pµa)+m0a

=
1

sinh(2Ea)

[
e−Ex4

(
γ4 sinh(Ea)− i∑

i
γi sin(pia)+m0a

)

+ (−1)n4e−Ex4

(
−γ4 sinh(Ea)+ i∑

i
γi sin(pia)+m0a

)]
where sinh2(Ea) = ∑i sin2(pia)+(m0a)2.

The first term is desirable; the second term has a peculiar oscillation (−1)n4.

Moreover, there are low-lying states for pia ∼ 0,(π,0,0),(π,π,0),(π,π,π) · · ·.
2×8 = 16 species in all. The Fermion Doubling Problem.

Lattice QCD 2 Doubled Spectrum Andreas S. Kronfeld
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In perturbation theory, 16 species arise from the 16 regions where sin(pµa)∼ a.

Vacuum polarization induces the coupling to run:

a
dg2

0
da

=−2
g4

0
16π2

(
11N

3
−

2n f

3

)
+O(g6

0)

With naı̈ve lattice fermions one finds this usual form of the result, but with n f = 16nψ.

Anomaly in flavor-singlet axial current Aµ = 1
2ψ̄(Tµ +T−µ)γµγ5ψ from gauging

ψ 7→ eiαγ5ψ, ψ̄ 7→ ψ̄eiαγ5.

Normally ∂ · A = 2mψ̄γ5ψ + A , where A is the axial anomaly. With naı̈ve lattice
fermions

ANF = (1−4+6−4+1)A = 0

Recall, the decay π0→ γγ should proceed through it, so that is lost with naı̈ve fermions.

Why does this happen? On lattice, symmetries are either exact or explicitly broken.

Lattice QCD 2 Species Doubling in Perturbation Theory Andreas S. Kronfeld
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The Fermion Doubling Problem
The spectrum, vacuum polarization, and axial anomaly of naı̈ve fermions are the first
sign that fermions do not like the lattice.

The Nielsen-Ninomiya Theorem says that there is no ultra-local fermion action with
the full chiral symmetry, no additional states, and a real, positive transfer matrix.

For a long time “ultra-local” was phrased “local”. Ultra-local means that interactions
coupling fields vanish if the fields are farther apart than some fixed distance, of order
a few lattice spacings.

“Local” means that they merely fall off exponentially.

There are now formulations of lattice fermions with undoubled spectra and full chiral
symmetry. Not ultra-local so no transfer matrix.

See P. Hasenfratz, hep-lat/0406033, for a succinct history and review.

Lattice QCD 2 Doubled Spectrum Andreas S. Kronfeld
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Wilson Fermions

To cope with the doubled spectrum, Wilson reasoned as follows.

The particle states should use projection matrices so that some components move
forward in time, and others backward.

∂4ψ(x)→
(

1− γ4
2

t4−1
a

+
1+ γ4

2
1− t−4

a

)
ψ(x)

ψ̄(x)γ4∂4ψ(x)→ ψ̄(x)
(

γ4−1
2

t4−1
a

+
1+ γ4

2
1− t−4

a

)
ψ(x)

= ψ̄(x)
(

γ4
t4− t−4

2a
− 1

2a
t4 + t−4−2

a2

)
ψ(x)

Repeat in all directions, leading to

LWF = LNF + 1
2a∑

µ
ψ̄(x)

(
tµ + t−µ−2

a2

)
ψ(x)

Lattice QCD 2 Wilson Fermion Action Andreas S. Kronfeld

21



Propagator for free Wilson fermions (for x4 > 0)

G(p,x4) =
ae−Ex4

2sinh(Ea)
γ4 sinh(Ea)− i∑i γi sin(pia)+m0a+ 1

2a2p̂2 +1− cosh(Ea)

1+m0a+ 1
2a2p̂2

with

cosh(Ea) = 1+
1
2

∑i sin2(pia)+(m0a+ 1
2a2p̂2)2

1+m0a+ 1
2a2p̂2

Now no oscillating state arises, and the energy is low only when p is small.

The price paid is sacrificing chiral symmetry ψ 7→ eiαγ5ψ, ψ̄ 7→ ψ̄eiαγ5. Both the mass

term and the new Wilson term break chiral symmetry explicitly.

mR = Zm(g2
0)
[
m0 +a−1g2

0C(g2
0)
]
.

On the other hand, the axial anomaly does come out correctly: the Wilson term

washes out the additional poles that generated extra anomalies (to cancel the total).

Lattice QCD 2 Wilson Fermion Results Andreas S. Kronfeld
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Staggered Fermions
In the early days, Susskind studied a Hamiltonian lattice gauge theory (discrete
space, continuous time, canonical Hamiltonian with conjugate momenta). He found a
way to formulate the fermions with less doubling.

On a spacetime lattice start with the naı̈ve fermion Lagrangian, re-written here

LNF =−ψ̄(n)

[
1
2a ∑

µ
γµ(Tµ−T−µ)+m0

]
ψ(n)

with n ∈ Z4 dimensionless site labels.

Introduce a unitary similarity transformation

ψ(n) = Ω(n)Ψ(n), ψ̄(n) = Ψ̄(n)Ω†(n), Ω(n) = γ
n1
1 γ

n2
2 γ

n3
3 γ

n4
4

Ω
†(n)γµT±µΩ(n) = ηµ(n)T±µ, ηµ(n) = (−1)n1+···nµ−1

Lattice QCD 2 Kawamoto-Smit Transformation Andreas S. Kronfeld
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After the transformation, the Lagrangian is

LNF =−
4

∑
α=1

Ψ̄α(n)

[
1
2a ∑

µ
ηµ(n)(Tµ−T−µ)+m0

]
Ψα(n)

Chiral symmetry remains intact. After the similarity transformation

Ω
†(n)γ5Ω(n) = γ5η5(n), η5(n) = (−1)n1+n2+n3+n4 =: ε(n)

Ψ(n) 7→ eiαγ5η5(n)
Ψ(n), Ψ̄(n) 7→ Ψ̄(n)eiαγ5η5(n).

The chiral transformation rotates even sites (n1 +n2 +n3 +n4 mod 2 = 0) one way
and odd sites (n1 +n2 +n3 +n4 mod 2 = 1) the other, so it is still global.

Written this way, the lattice fermion field has 4 pieces, each with the same Lagrangian;
two each with γ5Ψ =±Ψ. Truncate ∑

4
α=1 to one component.

Lattice QCD 2 Reduction Andreas S. Kronfeld
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The Lagrangian for the one component field χ is

Lstag =−χ̄(n)

[
1
2a ∑

µ
ηµ(n)(Tµ−T−µ)+m0

]
χ(n)

with U(1)×U(1) chiral symmetry

χ(n) 7→ eiθ+iαη5(n)
χ(n), χ̄(n) 7→ χ̄(n)e−iθ+iαη5(n).

This symmetry is enough to forbid an additive counter-term to the bare mass.

Vacuum polarization now behaves as if there are four species. Originally, these were
called flavors, in the hope that the four species could be given different masses and
correspond to u, d, s, c. Now they are looked at as unphysical and called “tastes”.

The Noether currents corresponding to the U(1)×U(1) chiral symmetry are conserved;
the symmetry is exact. Another (non-Noether) current yields the correct anomaly.

Staggered fermions still have the oscillating states.

Lattice QCD 2 Staggered Fermions Andreas S. Kronfeld
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Ginsparg-Wilson Relation

In continuum gauge theories, chiral symmetry (for physical amplitudes) follows es-
sentially from {/D,γ5}= 0.

It is worth asking whether this condition is (on a lattice) necessary, or merely sufficient.

It is only sufficient; Ginsparg and Wilson derived the necessary condition:

D−1
lat γ5 + γ5D−1

lat = aγ5 ⇒ γ5Dlat +Dlatγ5 = aDlatγ5Dlat

In the form on the left, we see that in correlation functions the violation of chiral sym-
metry is a local “contact” term, which drops out of the long-distance physics.

Until a few years ago, no solutions (except in free field theory) were known. Now
some local, but not ultra-local, solutions have been found.

Lattice QCD 2 Remnant of Chiral Symmetry Andreas S. Kronfeld
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Numerical Methods for Fermions
The incorporation of fermions into numerical simulations is the most daunting com-
putational problem in lattice QCD.

The Pauli exclusion principle states that two fermions cannot be in the same state.

Therefore, the integration variables in the functional integral are Grassman numbers:

{ψa,ψb}= {ψ̄a,ψb}= {ψ̄a, ψ̄b}= 0

The integration rule is (α complex, ε & ε̄ Grassman) BerezinZ
dψ(α+ ε̄ψ) =−ε̄,

Z
dψ̄(α+ ψ̄ε) = ε

Invariance under multiplication says

ψ = ξψ
′ ⇒ dψ = dψ

′/ξ

Lattice QCD 2 Grassman Numbers for Fermions Andreas S. Kronfeld
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Every action that we introduced takes the form

S = ∑
a,b

ψ̄aMabψa, M = M(U).

Using the rules of Grassman integrationZ
DψDψ̄e−ψ̄Mψ =

Z
Dψ

′Dψ̄
′e−ψ̄′V−1MV ψ′ = ∏

a
[V−1MV ]aa = detM

The physical interpretation of detM(U) is all possible fermions loops in the back-
ground of gauge field U .

A numerical simulation the generates gauge fields with weight detM e−Sgauge.

This is normal arithmetic, but the computational problem is huge.

M is a (3 ·4 ·N3
S ·N4)× (3 ·4 ·N3

S ·N4) matrix.
(Sparse for naı̈ve, staggered, and Wilson, but not GW; omit 4 for staggered.)

Lattice QCD 2 Fermion Determinatn → Fermion Loops Andreas S. Kronfeld
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Summary of Fermion Methods

Pattern of chiral symmetry breaking for various formulations of lattice fermions.

formulation G → H CPU
continuum QCD SU(n f )×SU(n f )→ SU(n f )

staggered§ Γ4×U(1)→ Γ4 fast: mq > 0.1ms, but n f = 4
Wilson SU(n f )→ SU(n f ) slower: mq > 0.5ms
G-W SU(n f )×SU(n f )→ SU(n f ) slower still: M not sparse

§ The vector part Γ4 is a finite (Clifford) group.

For all methods, the computation of detM (or changes in detM) gets slower and
slower as the quark mass decreases (ratio of eigenvalues).

Effective field theories can be used to show that the breaking of SU(n f )×SU(n f ) is
O(a2) in staggered, and O(a) in (unimproved) Wilson.

Lattice QCD 2 Summary Andreas S. Kronfeld
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Old Pessimism → New Optimism!
It is a good time to take up the study of lattice QCD.

To reduce the computational burden, until now almost all calculations of physically
interesting masses or hadronic matrix elements have been done in the so-called
“quenched approximation.”

This corresponds to omitting all vacuum loops, and compensating the omission with
ad hoc shifts in the bare gauge coupling and masses.

It’s a bit like a dielectric approximation, e2 → e2/ε. One can only hope that it works
when focusing on a narrow range of energies [ε(ω) = constant].

For example, many (of my own) papers include statements like “the nth error bar
comes from the discrepancy in determining mb from ϒ spectrum instead of the B
system.” ‘Twas very unsatisfactory.

Lattice QCD 2 Old Pessimism Andreas S. Kronfeld
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In 2003, however,

26 authors produced

this plot: =⇒

Set 1+4 free param-

eters with 1 + 4 me-

son masses.

Quenched (on left)

shows discrepancies

as much as 10–15%.

Unquenched QCD

(on right) shows

discrepancies of a

few %—within the

error bars.

0.9 1.0 1.1
quenched/experiment

Υ(1P-1S)

Υ(3S-1S)

Υ(2P-1S)

Υ(1D-1S)

ψ(1P-1S)

2m
B

s 
− mΥ

mΩ

3mΞ − m
N

f
K

fπ

0.9 1.0 1.1
(n

f
 = 2+1)/experiment

Davies et al., hep-lat/0304004

Lattice QCD 2 New Optimism Andreas S. Kronfeld
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The five fiducial quantities (mϒ(2S)−mϒ(1S), m2
π, m2

K, mDs, and mϒ(1S)) and the nine
shown are all, in a certain sense, “gold-plated.”

The gold-plated class includes stable-particle masses and hadronic matrix elements
with at most one hadron in the initial or final states

Unstable particles and non-leptonic decays inevitably entail multi-particle states—
much more difficult (to be explained later).

This may seem like a disappointing restriction.

There are, however, gold-plated matrix elements for extracting all CKM elements |Vqq′|,
except |Vtb|. (Top quark decays before hadronizing.)

It’s not unrealistic to expect the theoretical uncertainty in the CKM matrix to be re-
duced to a few percent in the next 2–3 years.
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Disclaimer
These results obtained with improved staggered quarks in the sea: 2+1 flavors.

Recall that staggered fermions come in four “tastes.” The extra degrees of freedom
are removed by using [det4(/Dstag +m)]1/4 instead of det1(/D+m).

At non-zero lattice spacing, this prescription leads to violations of unitarity, observed
in numerical data for the a0 propagator.

Conjectured (based on plausibility arguments) to be manageable using “rooted stag-
gered chiral perturbation theory.”

No proof, however, and therefore remains controversial. A recent review of these
issues deemed rooted staggered quarks to be “ugly” but likely viable in the continuum
limit [S.R. Sharpe, hep-lat/0610094].

Other methods of treating the quark sea are 6–12 years behind.
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